I nternet Engi neering Task Force (IETF) C. Newman
Request for Comments: 5802 Oracl e
Cat egory: Standards Track A. Menon- Sen
| SSN. 2070-1721 Oyx Mail Systens GrbH
A. Mel ni kov

| sode, Ltd.

N. WIlians

O acl e

July 2010

Sal ted Chal | enge Response Aut hentication Mechani sm (SCRAM
SASL and GSS- APl Mechani sns

Abst ract

The secure authentication mechani sm nost w dely depl oyed and used by
Internet application protocols is the transm ssion of clear-text
passwords over a channel protected by Transport Layer Security (TLS)
There are sone significant security concerns with that nechani sm

whi ch coul d be addressed by the use of a challenge response

aut henti cati on mechani smprotected by TLS. Unfortunately, the
chal | enge response nechani snms presently on the standards track al
fail to neet requirements necessary for w despread depl oynent, and
have had success only in limted use.

This specification describes a fanmly of Sinple Authentication and
Security Layer (SASL; RFC 4422) authentication mechanisns called the
Sal ted Chal | enge Response Aut henticati on Mechani sm (SCRAM, which
addresses the security concerns and neets the deployability
requirenents. \Wen used in conbination with TLS or an equi val ent
security layer, a nechanismfromthis famly could inprove the status
quo for application protocol authentication and provide a suitable
choice for a mandatory-to-inpl ement mechani smfor future application
prot ocol standards.

Newran, et al. St andards Track [Page 1]

RFC 5802 SCRAM July 2010

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF comunity. |t has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc5802

Copyright Notice

Copyright (c) 2010 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD Li cense.

Newman, et al. St andards Track [Page 2]

RFC 5802 SCRAM July 2010

Tabl e of Contents

1. IntroduCti On ... 4
2. Conventions Used in This Document 5
2.1, Termnol OgY . ..o e 5
2.2, Notation ... 6
3. SCRAM Al gorithm OVvervi W e 7
4. SCRAM Mechani sm NamBS 8
5. SCRAM Aut hentication Exchange 9
5.1. SCRAM Attributes e 10
5.2. Conpliance with SASL Mechani sm Requirenents 13
6. Channel Binding 14
6.1. Default Channel Binding 15
7. FOormal SyntaX 15
8. SCRAM as a GSS-API Mechanism 19
8.1. GSS-API Principal Nane Types for SCRAM 19
8.2. GSS- APl Per-Message Tokens for SCRAM 20
8.3. GSS Pseudo random() for SCRAM 20
9. Security Considerati ONS 20
10. TANA Considerati ONS it e 22
11. Acknow edgemBnt S 23
12, Ref erenCes ... 24
12.1. Normative References 24
12.2. Normative References for GSS-API Inplenentors 24
12.3. Informative References 25
Appendi x A. Ot her Authentication Mechanisms 27
Appendi x B. Design Mdtivations i 27

Newman, et al. St andards Track [Page 3]

RFC 5802 SCRAM July 2010

1.

I nt roducti on

This specification describes a famly of authentication nmechani sns
called the Salted Chall enge Response Aut hentication Mechani sm (SCRAM
whi ch addresses the requirenents necessary to deploy a chall enge-
response nmechani smnore w dely than past attenpts (see Appendi x A and
Appendi x B). Wen used in conbination with Transport Layer Security
(TLS; see [RFC5246]) or an equivalent security layer, a mechani sm
fromthis famly could inprove the status quo for application
protocol authentication and provide a suitable choice for a
mandat ory-t o-i npl ement nechani sm for future application protoco

st andar ds.

For simplicity, this famly of nechani sns does not presently include
negotiation of a security layer [RFC4422]. 1t is intended to be used
with an external security layer such as that provided by TLS or SSH
with optional channel binding [RFC5056] to the external security

| ayer.

SCRAM i s specified herein as a pure Sinple Authentication and
Security Layer (SASL) [RFC4422] mechanism but it confornms to the new
bri dge between SASL and the Generic Security Service Application
Program I nterface (GSS-APlI) called "GS2" [RFC5801]. This neans that
thi s docunent defines both, a SASL nmechani sm and a GSS- APl mechani sm

SCRAM provi des the foll owi ng protocol features:

0 The authentication information stored in the authentication
dat abase is not sufficient by itself to inpersonate the client.
The information is salted to prevent a pre-stored dictionary
attack if the database is stolen.

0 The server does not gain the ability to inpersonate the client to
other servers (with an exception for server-authorized proxies).

0 The mechanismpernits the use of a server-authorized proxy w thout
requi ring that proxy to have super-user rights with the back-end
server.

0 Mitual authentication is supported, but only the client is nanmed
(i.e., the server has no nane).

0 When used as a SASL nechani sm SCRAM is capabl e of transporting
aut hori zation identities (see [RFC4422], Section 2) fromthe
client to the server

Newman, et al. St andards Track [Page 4]

RFC 5802 SCRAM July 2010

A separate docunent defines a standard LDAPv3 [RFC4510] attribute
that enabl es storage of the SCRAM aut hentication information in LDAP.
See [RFC5803].

For an in-depth discussion of why other chall enge response nechanisns
are not considered sufficient, see Appendix A. For nore information
about the notivations behind the design of this nechanism see
Appendi x B

2. Conventions Used in This Document

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Formal syntax is defined by [RFC5234] including the core rules
defined in Appendix B of [RFC5234].

Exanpl e lines prefaced by "C:" are sent by the client and ones
prefaced by "S:" by the server. |If a single "C" or "S:" |abe
applies to multiple lines, then the Iline breaks between those |lines
are for editorial clarity only, and are not part of the actua

prot ocol exchange.

2.1. Termnol ogy

Thi s docunment uses several terms defined in [RFC4949] ("Internet
Security dossary") including the follow ng: authentication

aut henti cati on exchange, authentication information, brute force,
chal | enge-response, cryptographic hash function, dictionary attack
eavesdroppi ng, hash result, keyed hash, man-in-the-mniddle, nonce,
one-way encryption function, password, replay attack, and salt.
Readers not famliar with these ternms should use that glossary as a
reference

Sone clarifications and additional definitions foll ow

0 Authentication information: Information used to verify an identity
clained by a SCRAM client. The authentication information for a
SCRAM i dentity consists of salt, iteration count, "StoredKey" and
"ServerKey" (as defined in the algorithmoverview for each
supported cryptographic hash function

0 Authentication database: The database used to | ook up the

aut hentication informati on associated with a particular identity.
For application protocols, LDAPv3 (see [RFC4510]) is frequently

Newman, et al. St andards Track [Page 5]

RFC 5802 SCRAM July 2010

2

2

used as the authentication database. For network-|evel protocols
such as PPP or 802.11x, the use of RADI US [RFC2865] is nore
conmon.

0 Base64: An encodi ng nechani sm defined in [RFC4648] that converts
an octet string input to a textual output string that can be
easily displayed to a human. The use of base64 in SCRAMis
restricted to the canonical formw th no whitespace.

0 Cctet: An 8-bit byte.

0 Cctet string: A sequence of 8-bit bytes.

o Salt: Arandomoctet string that is conmbined with a password
bef ore applying a one-way encryption function. This value is used
to protect passwords that are stored in an authentication
dat abase
Not at i on

The pseudocode description of the al gorithmuses the foll ow ng

not at i ons:

o ":=": The variable on the left-hand side represents the octet

string resulting fromthe expression on the right-hand side.
"+": COctet string concatenation

"[1": A portion of an expression enclosed in "[" and "]" may not
be included in the result under some circunstances. See the
associ ated text for a description of those circunstances.

Normal i ze(str): Apply the SASLprep profile [RFC4013] of the
"stringprep" algorithm|[RFC3454] as the nornalization algorithmto
a UTF-8 [RFC3629] encoded "str". The resulting string is also in
UTF-8. When applying SASLprep, "str" is treated as a "stored
strings", which nmeans that unassigned Uni code codepoints are

prohi bited (see Section 7 of [RFC3454]). Note that

i npl ement ati ons MJST either inplenent SASLprep or disallow use of
non US-ASCI| Unicode codepoints in "str".

HVAC(key, str): Apply the HVAC keyed hash al gorithm (defined in

[RFC2104]) using the octet string represented by "key" as the key
and the octet string "str" as the input string. The size of the
result is the hash result size for the hash function in use. For
exanple, it is 20 octets for SHA-1 (see [RFC3174]).

Newman, et al. St andards Track [Page 6]

RFC 5802 SCRAM July 2010

3.

0 H(str): Apply the cryptographic hash function to the octet string
"str", producing an octet string as a result. The size of the
result depends on the hash result size for the hash function in
use.

0 XOR Apply the exclusive-or operation to conbine the octet string
on the left of this operator with the octet string on the right of
this operator. The length of the output and each of the two
inputs will be the same for this use.

o Hi(str, salt, i):

Ul = HVMAC(str, salt + INT(1))

u2 = HVAC(str, Ul)

U-1:= HWAC(str, Ui-2)

Ui = HVAC(str, Ui-1)

H := UL XOR U2 XOR ... XOR U

where "i" is the iteration count, "+" is the string concatenation

operator, and INT(g) is a 4-octet encoding of the integer g, nost
significant octet first.

H () is, essentially, PBKDF2 [RFC2898] with HMAC() as the
pseudor andom function (PRF) and with dkLen == output |ength of
HVAC() == output length of H().

SCRAM Al gorithm Overvi ew

The following is a description of a full, unconpressed SASL SCRAM

aut henti cati on exchange. Nothing in SCRAM prevents either sending
the client-first message with the SASL aut hentication request defined
by an application protocol ("initial client response"), or sending
the server-final nmessage as additional data of the SASL outcone of
aut henti cati on exchange defined by an application protocol. See

[RFC4422] for nore details.

Note that this section omts sonme details, such as client and server
nonces. See Section 5 for nore details.

To begin with, the SCRAM client is in possession of a usernane and

password (*) (or a dientKey/ ServerKey, or SaltedPassword). It sends
the usernane to the server, which retrieves the correspondi ng

aut hentication information, i.e., a salt, StoredKey, ServerKey, and
the iteration count i. (Note that a server inplenentation may choose

Newman, et al. St andards Track [Page 7]

RFC 5802 SCRAM July 2010

to use the sane iteration count for all accounts.) The server sends
the salt and the iteration count to the client, which then computes
the follow ng values and sends a CientProof to the server:

(*) Note that both the usernane and t he password MJUST be encoded in
UTF- 8 [RFC3629].

Informative Note: Inplenentors are encouraged to create test cases
that use both usernames and passwords with non-ASCI| codepoints. In
particular, it’s useful to test codepoints whose "Uni code

Normal i zati on Form C' and "Uni code Nornmalizati on Form KC' are
different. Sone exanples of such codepoints include Vulgar Fraction
One Hal f (W00BD) and Acute Accent (U+00B4).

Sal t edPassword H (Normal i ze(password), salt, i)

Cl i ent Key = HVAC(Sal t edPassword, "dient Key")

St or edKey = H(d i ent Key)

Aut hMessage = client-first-message-bare + "," +
server-first-nmessage + "," +

client-final-message-w thout - proof
HVAC(St or edKey, Aut hMessage)
ClientKey XOR dientSignature
HVAC(Sal t edPassword, "Server Key")
HMAC(Ser ver Key, Aut hMessage)

ClientSignature :
Cl i ent Proof

Ser ver Key

Server Signature :

The server authenticates the client by conputing the CientSignature,
exclusive-ORing that with the dientProof to recover the CientKey
and verifying the correctness of the dientKey by applying the hash
function and conparing the result to the StoredKey. |If the dientKey
is correct, this proves that the client has access to the user’s
passwor d.

Simlarly, the client authenticates the server by conputing the

Server Signature and conparing it to the value sent by the server. |If
the two are equal, it proves that the server had access to the user’s
Ser ver Key.

The Aut hMessage i s conputed by concatenati ng nessages fromthe
aut henti cati on exchange. The format of these nmessages is defined in
Section 7.

4. SCRAM Mechani sm Nanes

A SCRAM nechani smnane is a string "SCRAM" followed by the

upper cased name of the underlying hash function taken fromthe | ANA
"Hash Function Textual Nanes" registry (see http://ww.iana.org),
optionally followed by the suffix "-PLUS" (see below). Note that
SASL nmechani sm nanes are limted to 20 octets, which neans that only

Newman, et al. St andards Track [Page 8]

RFC 5802 SCRAM July 2010

hash function names with |l engths shorter or equal to 9 octets

(20-1 ength("SCRAM ") -1 ength("-PLUS") can be used. For cases when the
underlying hash function nanme is |onger than 9 octets, an alternative
9-octet (or shorter) nanme can be used to construct the correspondi ng
SCRAM nechani sm nane, as long as this alternative nanme doesn’t
conflict with any other hash function name fromthe | ANA "Hash
Function Textual Names" registry. |In order to prevent future
conflict, such alternative names SHOULD be registered in the | ANA
"Hash Function Textual Nanes" registry.

For interoperability, all SCRAM clients and servers MJST i npl enent
the SCRAM SHA-1 aut hentication nmechanism i.e., an authentication
mechani smfromthe SCRAM fanmily that uses the SHA-1 hash function as
defined in [RFC3174].

The "-PLUS" suffix is used only when the server supports channe

binding to the external channel. |f the server supports channe
binding, it will advertise both the "bare" and "plus" versions of
what ever nmechani sms it supports (e.g., if the server supports only

SCRAMwith SHA-1, then it will advertise support for both SCRAM SHA-1
and SCRAM SHA-1-PLUS). If the server does not support channe
binding, then it will advertise only the "bare" version of the
mechani sm (e.g., only SCRAM SHA-1). The "-PLUS" exists to allow
negotiati on of the use of channel binding. See Section 6

5. SCRAM Aut henti cati on Exchange

SCRAM i s a SASL nechani sm whose client response and server chall enge
messages are text-based nessages containing one or nore attribute-
val ue pairs separated by commas. Each attribute has a one-letter
nane. The nessages and their attributes are described in

Section 5.1, and defined in Section 7.

SCRAM is a client-first SASL mechani sm (see [RFC4422], Section 5,
item2a), and returns additional data together with a server’s
i ndi cation of a successful outcone.

This is a sinple exanple of a SCRAM SHA-1 aut henticati on exchange
when the client doesn’t support channel bindings (username 'user’ and
password 'pencil’ are used):

C. n,,n=user, r=f yko+d2| bbFgONRv9gkxdawL

S: r=fyko+d2l bbFgONRv9gkxdawL3r f cNHYJY1ZWW/s7j , s=QSXCR+(QBsek8bf 92
i =4096

C. c=biws, r=f yko+d2l bbFgONRv9gkxdawL3r f cNHYJY1ZWW/s7j ,
p=v0X8v3Bz2TOCIChJQyFOX+HI 4Ts=

S: v=rnF9pqV8S7suAoZW a4dJRkFsKQ=

Newman, et al. St andards Track [Page 9]

RFC 5802 SCRAM July 2010

First, the client sends the "client-first-nessage" containing:

0 a GS2 header consisting of a flag indicating whether channel
bi ndi ng i s supported-but-not-used, not supported, or used, and an
optional SASL authorization identity;

0 SCRAM username and a random uni que nonce attri butes.

Note that the client’s first nessage will always start with "n", "y",
or "p"; otherw se, the nmessage is invalid and authenticati on MJST
fail. This is inportant, as it allows for GS2 extensibility (e.qg.

to add support for security |ayers).

In response, the server sends a "server-first-message" containing the
user’s iteration count i and the user’s salt, and appends its own
nonce to the client-specified one.

The client then responds by sending a "client-final-nmessage" with the
same nonce and a CientProof conputed using the sel ected hash
function as explained earlier.

The server verifies the nonce and the proof, verifies that the

aut horization identity (if supplied by the client in the first
message) is authorized to act as the authentication identity, and,
finally, it responds with a "server-final-nmessage", concluding the
aut henti cati on exchange.

The client then authenticates the server by conputing the

Server Signature and conparing it to the value sent by the server. |If
the two are different, the client MJST consider the authentication
exchange to be unsuccessful, and it mght have to drop the
connecti on.

5.1. SCRAM Attri butes

This section describes the permissible attributes, their use, and the
format of their values. Al attribute nanes are single US-ASC I
letters and are case-sensitive.

Note that the order of attributes in client or server nessages is
fixed, with the exception of extension attributes (described by the
"ext ensi ons"” ABNF production), which can appear in any order in the
designated positions. See Section 7 for authoritative reference.

o a This is an optional attribute, and is part of the GS2 [RFC5801]
bridge between the GSS-API and SASL. This attribute specifies an
aut horization identity. Aclient may include it inits first
message to the server if it wants to authenticate as one user, but

Newman, et al. St andards Track [Page 10]

RFC 5802 SCRAM July 2010

subsequently act as a different user. This is typically used by
an administrator to perform sone managenent task on behal f of
anot her user, or by a proxy in some situations.

Upon the receipt of this value the server verifies its
correctness according to the used SASL protocol profile.
Failed verification results in failed authentication exchange.

If this attribute is omtted (as it normally would be), the
aut horization identity is assuned to be derived fromthe
usernane specified with the (required) "n" attribute.

The server always authenticates the user specified by the "n
attribute. If the "a" attribute specifies a different user,
the server associates that identity with the connection after
successful authentication and authorization checks.

The syntax of this field is the sane as that of the "n" field
with respect to quoting of '= and ',’
0o n: This attribute specifies the nane of the user whose password is
used for authentication (a.k.a. "authentication identity"
[RFC4422]). Aclient MIUST include it inits first nessage to the

server. |If the "a" attribute is not specified (which would
normal |y be the case), this username is also the identity that
will be associated with the connection subsequent to

aut hentication and authori zati on.

Bef ore sending the usernane to the server, the client SHOULD
prepare the usernane using the "SASLprep" profile [RFC4013] of
the "stringprep" algorithm|[RFC3454] treating it as a query
string (i.e., unassigned Unicode code points are allowed). If
the preparation of the usernane fails or results in an enpty
string, the client SHOULD abort the authentication exchange

(*).

(*) An interactive client can request a repeated entry of the
user nanme val ue.

Upon recei pt of the usernane by the server, the server MJST
either prepare it using the "SASLprep" profile [RFC4013] of the
"stringprep" algorithm|[RFC3454] treating it as a query string
(i.e., unassigned Uni code codepoints are allowed) or otherw se
be prepared to do SASLprep-aware string comnpari sons and/or

i ndex | ookups. |If the preparation of the usernane fails or
results in an enpty string, the server SHOULD abort the

Newman, et al. St andards Track [Page 11]

RFC 5802 SCRAM July 2010

aut henti cati on exchange. \Whether or not the server prepares
the usernanme using "SASLprep", it MJST use it as received in
hash cal cul ati ons.

The characters ', or '= in usernames are sent as '=2C and
'=3D respectively. |f the server receives a usernane that
contains '=" not followed by either '2C or '3D, then the

server MJUST fail the authentication

0 m This attribute is reserved for future extensibility. 1In this
version of SCRAM its presence in a client or a server nessage
MUST cause authentication failure when the attribute is parsed by
t he ot her end.

o r: This attribute specifies a sequence of random printable ASClI
characters excluding ',’ (which forns the nonce used as input to
the hash function). No quoting is applied to this string. As
described earlier, the client supplies an initial value in its
first message, and the server augnents that value with its own
nonce inits first response. It is inportant that this val ue be
different for each authentication (see [RFC4086] for nore details
on how to achieve this). The client MJST verify that the initia
part of the nonce used in subsequent nessages is the same as the
nonce it initially specified. The server MJST verify that the
nonce sent by the client in the second nessage is the sane as the
one sent by the server in its first message.

0 c¢: This REQU RED attribute specifies the base64-encoded GS2 header
and channel binding data. It is sent by the client in its second
aut henti cation nmessage. The attribute data consist of:

* the GS2 header fromthe client’s first nessage (recall that the
GS2 header contains a channel binding flag and an optiona
authzid). This header is going to include channel binding type
prefix (see [RFC5056]), if and only if the client is using
channel bi ndi ng;

* followed by the external channel’s channel binding data, if and
only if the client is using channel binding.

0 s: This attribute specifies the base64-encoded salt used by the
server for this user. It is sent by the server inits first
message to the client.

o i: This attribute specifies an iteration count for the selected

hash function and user, and MJUST be sent by the server along with
the user’s salt.

Newman, et al. St andards Track [Page 12]

RFC 5802 SCRAM July 2010

5.

(0]

2

For the SCRAM SHA- 1/ SCRAM SHA- 1- PLUS SASL nechani sm servers
SHOULD announce a hash iteration-count of at |east 4096. Note
that a client inplenentation MAY cache Cient Key&ServerKey (or
just Sal tedPassword) for later reauthentication to the sane
service, as it is likely that the server is going to advertise
the sane salt val ue upon reauthentication. This mght be
useful for nobile clients where CPU usage is a concern

p: This attribute specifies a base64-encoded CientProof. The
client conputes this value as described in the overvi ew and sends
it to the server.

v: This attribute specifies a base64-encoded ServerSignature. It
is sent by the server inits final nmessage, and is used by the
client to verify that the server has access to the user’s
authentication information. This value is conputed as expl ai ned
in the overview.

e: This attribute specifies an error that occurred during

aut henti cation exchange. It is sent by the server inits fina
message and can hel p di agnose the reason for the authentication
exchange failure. On failed authentication, the entire server-
final -nessage is OPTIONAL; specifically, a server inplenentation
MAY concl ude the SASL exchange with a failure w thout sending the
server-final -message. This results in an application-Ilevel error
response without an extra round-trip. |If the server-final-nessage
is sent on authentication failure, then the "e" attribute MJST be
i ncl uded.

As-yet unspecified nandatory and optional extensions. Mndatory
extensions are encoded as values of the 'm attribute (see ABNF
for reserved-next in section 7). Optional extensions use as-yet
unassi gned attri bute nanes.

Mandat ory extensions sent by one peer but not understood by the
other MUST cause authentication failure (the server SHOULD send
t he "extensions-not-supported” server-error-val ue).

Unknown opti onal extensions MJST be ignored upon receipt.

Conpl i ance with SASL Mechani sm Requirenents

This section describes conmpliance with SASL nmechani smrequirenents

specified in Section 5 of [RFC4422].

1)

" SCRAM SHA- 1" and " SCRAM SHA- 1- PLUS" .

2a) SCRAMis a client-first nmechani sm

Newman, et al. St andards Track [Page 13]

RFC 5802 SCRAM July 2010

2b) SCRAM sends additional data with success.

3) SCRAMis capable of transferring authorization identities from
the client to the server

4) SCRAM does not offer any security |layers (SCRAM offers channe
bi ndi ng i nstead).

5) SCRAM has a hash protecting the authorization identity.
6. Channel Binding

SCRAM supports channel binding to external secure channels, such as
TLS. dients and servers may or may nhot support channel binding,
therefore the use of channel binding is negotiable. SCRAM does not
provi de security |layers, however, therefore it is inperative that
SCRAM provide integrity protection for the negotiation of channe

bi ndi ng.

Use of channel binding is negotiated as foll ows:

0 Servers that support the use of channel binding SHOULD adverti se
bot h the non- PLUS (SCRAM <hash-function>) and PLUS-variant (SCRAM
<hash-function>-PLUS) mechani smnanme. |f the server cannot
support channel binding, it SHOULD advertise only the non-PLUS-
variant. |If the server would never succeed in the authentication
of the non-PLUS-variant due to policy reasons, it MJST advertise
only the PLUS-vari ant.

o If the client supports channel binding and the server does not
appear to (i.e., the client did not see the -PLUS nanme adverti sed
by the server), then the client MUST NOT use an "n" gs2-cbind-
flag.

o0 Cdients that support nmechani smnegotiation and channel binding
MUST use a "p" gs2-cbind-flag when the server offers the PLUS-
variant of the desired GS2 nmechani sm

o If the client does not support channel binding, then it MJST use
an "n" gs2-chind-flag. Conversely, if the client requires the use
of channel binding then it MJST use a "p" gs2-cbind-flag. Cients
that do not support mechani sm negotiati on never use a "y" @gs2-
cbind-flag, they use either "p" or "n" according to whether they
require and support the use of channel binding or whether they do
not, respectively.

o Upon receipt of the client-first nmessage, the server checks the
channel binding flag (gs2-cbind-flag).

Newman, et al. St andards Track [Page 14]

RFC 5802 SCRAM July 2010

* |If the flag is set to "y" and the server supports channe
bi ndi ng, the server MJST fail authentication. This is because
if the client sets the channel binding flag to "y", then the
client nmust have believed that the server did not support
channel binding -- if the server did in fact support channe
binding, then this is an indication that there has been a
downgrade attack (e.g., an attacker changed the server’s
mechanismlist to exclude the -PLUS suffixed SCRAM nechani sm
nane(s)).

* |f the channel binding flag was "p" and the server does not
support the indicated channel binding type, then the server
MUST fail authentication.

The server MJST al ways validate the client’s "c=" field. The server
does this by constructing the value of the "c=" attribute and then
checking that it natches the client’s c= attribute val ue.

For nore discussions of channel bindings, and the syntax of channe
bi nding data for various security protocols, see [RFC5056].

6.1. Default Channel Binding

A default channel binding type agreenent process for all SASL
application protocols that do not provide their own channel binding
type agreenent is provided as follows.

"tls-unique’ is the default channel binding type for any application
that doesn't specify one.

Servers MUST inplenment the "tls-unique" [RFC5929] channel binding
type, if they inplenent any channel binding. dients SHOULD

i npl ement the "tls-uni que” [RFC5929] channel binding type, if they

i npl ement any channel binding. dients and servers SHOULD choose the
hi ghest -1 ayer/innernost end-to-end TLS channel as the channel to

whi ch to bind.

Servers MJST choose the channel binding type indicated by the client,
or fail authentication if they don’t support it.

7. Formal Syntax
The followi ng syntax specification uses the Augnented Backus- Naur

form (ABNF) notation as specified in [RFC5234]. "UTF8-2", "UTF8-3"
and "UTF8-4" non-terminal are defined in [RFC3629].

Newman, et al. St andards Track [Page 15]

RFC 5802

SCRAM

ALPHA = <as defined in RFC 5234 appendi x B. 1>
DIG@ T = <as defined in RFC 5234 appendi x B. 1>

UTF8- 2
UTF8- 3
UTF8- 4

attr-va

val ue

val ue- saf e- char

val ue- char

printable

base64- char
base64- 4
base64-3
base64- 2
base64

posit-nunber =

sasl| name

aut hzid

cb- nane

Newran, et al

<as defined in RFC 3629 (STD 63)>
<as defined in RFC 3629 (STD 63)>
<as defined in RFC 3629 (STD 63)>

ALPHA "=" val ue
;; Generic syntax of any attribute sent
;; by server or client

1*val ue- char
0%x01-2B /| %2D-3C /| Y%3E-7F |/

UTF8-2 / UTF8-3 / UTF8-4
i UTF8-char except NUL, "=", and ","

val ue-safe-char / "=

%21-2B /| %2D- 7E

;; Printable ASCI| except ",".

;; Note that any "printable"” is also
;; avalid "val ue".

ALPHA / DIGT /["/I" | "+"

4base64- char

3base64-char "="

2base64-char "=="

*baseb4-4 [base64-3 / base64- 2]

%31-39 *DIAT

;7 A positive nunber.

1*(val ue-safe-char / "=2C" |/ "=3D")
;; Conforms to <val ue>.

"a=" sasl nanme
;7 Protocol specific.

1*(ALPHA/ DIGT/ n.n / n_u)
;; See RFC 5056, Section 7.
i, E.g., "tls-server-end-point" or

i, "tls-unique".

St andards Track

July 2010

[Page 16]

RFC 5802 SCRAM

gs2-chbind-fl ag y

July 2010

bi ndi ng.

("p=" cb-name) / "n" /

7, "n" ->client doesn’t support channe

7 "y" -> client does support channel binding
- but thinks the server does not.

i, "p" -> client requires channel binding.

The sel ected channel binding follows "p="

gs2- header = gs2-cbind-flag "," [authzid] ",
;; G52 header for SCRAM

(the actual GS2 header includes an optiona

"standard", but since SCRAMis "standard", we

;; flag to indicate that the GSS nmechani smis not

don’t include that flag).

user name = "n=" sasl nane
;7 Usernanes are prepared using SASLprep

reserved-mext = "m" 1*(val ue-char)

;; Reserved for signaling nandatory extensions.

;; The exact syntax will be defined in
;; the future.

"c=" base64
;; base64 encodi ng of chind-input.

channel - bi ndi ng

pr oof = "p=" baseb4

nonce = "r=" c-nonce [s-nonce]
;7 Second part provided by server

c-nonce = printable
S-nonce = printable
sal t = "s=" baseb64
verifier = "v=" base64

;; base-64 encoded Server Si gnature

iteration-count posi t - nunber

;7 A positive nunber.

client-first-nmessage-bare =
[reserved-next ","]

usernane "," nonce [",

ext ensi ons]

client-first-nessage =
gs2- header client-first-message-bare

Newran, et al. St andards Track

[Page 17]

RFC 5802 SCRAM July 2010

server-first-nmessage =

[reserved-next ","] nonce "," salt ","

iteration-count ["," extensions]
client-final-nmessage-w thout-proof =

channel -binding "," nonce [","

ext ensi ons]
client-final-nmessage =

client-final-nessage-w thout-proof "," proof
server-error = "e=" server-error-val ue
server-error-value = "invalid-encoding" /

"ext ensi ons-not - supported” / ; unrecognized 'nm val ue

"invalid-proof" /
"channel - bi ndi ngs-dont - mat ch" /
"server-does-support - channel - bi ndi ng" /
; server does not support channel binding
"channel - bi ndi ng- not - supported" /
"unsupport ed- channel - bi ndi ng-type" /
"unknown-user" /
"i nval i d- user name- encodi ng" /
; invalid usernane encoding (invalid UTF-8 or
; SASLprep failed)
"no-resources" /
"other-error" /
server-error-val ue-ext
; Unrecogni zed errors should be treated as "other-error".
; In order to prevent information disclosure, the server
; may substitute the real reason with "other-error".

server-error-val ue-ext = val ue
; Additional error reasons added by extensions
; to this docunent.

server-final -message = (server-error / verifier)
["," extensions]

extensions = attr-val *("," attr-val)
;7 Al extensions are optional
;; i.e., unrecognized attributes
;; not defined in this docunent
;7 MJST be ignored.

cbi nd-dat a = 1*CCTET

Newman, et al. St andards Track [Page 18]

RFC 5802 SCRAM July 2010

8.

8.

cbi nd-i nput = gs2- header [cbind-data]
;; cbind-data MJST be present for
7 0s2-cbind-flag of "p" and MJST be absent
v, for "y" or

n
SCRAM as a GSS- APl Mechani sm

This section and its sub-sections and all normative references of it
not referenced el sewhere in this docunent are | NFORMATI ONAL for SASL
i mpl ementors, but they are NORMATI VE for GSS-API inpl enentors.

SCRAM is actually also a GSS-API nmechanism The nmessages are the
sane, but a) the GS2 header on the client’s first nessage and channe
bi ndi ng data i s excluded when SCRAM i s used as a GSS- APl nechani sm
and b) the RFC2743 section 3.1 initial context token header is
prefixed to the client’s first authenticati on nessage (context

t oken).

The GSS- APl mechanism O D for SCRAMSHA-1 is 1.3.6.1.5.5.14 (see
Section 10).

SCRAM security contexts always have the nutual _state flag

(GSS_ C MUTUAL_FLAG set to TRUE. SCRAM does not support credentia
del egation, therefore SCRAM security contexts alway have the

del eg _state flag (GSS_C DELEG FLAG) set to FALSE

1. GSS-API Principal Name Types for SCRAM

SCRAM does not explicitly nane acceptor principals. However, the use
of acceptor principal names to find or pronpt for passwords is

useful. Therefore, SCRAM supports standard generic nane syntaxes for
acceptors such as GSS_C NT_HOSTBASED SERVI CE (see [RFC2743], Section
4.1). Inplementations should use the target nane passed to

GSS_Init_sec_context(), if any, to help retrieve or pronpt for SCRAM
passwor ds.

SCRAM supports only a single nane type for initiators:
GSS_C NT_USER NAME. GSS C NT_USER NAME is the default name type for
SCRAM

There is no nanme canoni calization procedure for SCRAM beyond appl yi ng
SASLprep as described in Section 5.1.

The query, display, and exported nanme syntaxes for SCRAM pri nci pa
nanes are all the sane. There are no SCRAM specific name syntaxes
(SCRAM initiator principal nanes are free-form; -- applications
shoul d use generic GSS-APlI nane types such as GSS C NT_USER NAME and

Newman, et al. St andards Track [Page 19]

RFC 5802 SCRAM July 2010

GSS_C _NT_HOSTBASED SERVI CE (see [RFC2743], Section 4). The exported
nane token does, of course, conformto [RFC2743], Section 3.2, but
the "NAME" part of the token is just a SCRAM user nane.

8.2. GSS-API Per-Message Tokens for SCRAM

The per-nessage tokens for SCRAM as a GSS- APl mechani sm SHALL be the
same as those for the Kerberos V GSS-API nechani sm [RFC4121] (see
Section 4.2 and sub-sections), using the Kerberos V "aes128-cts-hmac-
shal-96" enctype [RFC3962].

The replay_det state (GSS _C REPLAY FLAG, sequence_state
(GSS_C_SEQUENCE_FLAG), conf_avail (GSS_C CONF_FLAG and integ_avail
(GSS_C CONF_FLAG) security context flags are always set to TRUE

The 128-bit session "protocol key" SHALL be derived by using the

| east significant (right-nost) 128 bits of HMAC(StoredKey, "GSS-API
session key" || OientKey || AuthMessage). "Specific keys" are then
derived as usual as described in Section 2 of [RFC4121], [RFC3961],
and [RFC3962].

The terns "protocol key" and "specific key" are Kerberos V5 terns
[RFC3961] .

SCRAM does support PROT_READY, and is PROT_READY on the initiator
side first upon receipt of the server’s reply to the initial security
cont ext token.

8.3. GSS Pseudo randon() for SCRAM

The GSS_Pseudo_random() [RFC4401] for SCRAM SHALL be the same as for
the Kerberos V GSS- APl nechani sm [RFC4402]. There is no acceptor-
asserted sub-session key for SCRAM thus GSS C PRF_KEY FULL and

GSS _C PRF_KEY PARTI AL are equivalent for SCRAM s GSS Pseudo_randon().
The protocol key to be used for the GSS Pseudo _random() SHALL be the
same as the key defined in Section 8. 2.

9. Security Considerations

If the authentication exchange is performed without a strong security
| ayer (such as TLS with data confidentiality), then a passive
eavesdropper can gain sufficient information to nount an offline
dictionary or brute-force attack that can be used to recover the
user’s password. The anount of time necessary for this attack
depends on the cryptographic hash function sel ected, the strength of
the password, and the iteration count supplied by the server. An
external security layer with strong encryption will prevent this

att ack.

Newman, et al. St andards Track [Page 20]

RFC 5802 SCRAM July 2010

If the external security layer used to protect the SCRAM exchange
uses an anonynmous key exchange, then the SCRAM channel bi nding
mechani sm can be used to detect a man-in-the-mddle attack on the
security layer and cause the authentication to fail as a result.
However, the nman-in-the-niddle attacker will have gained sufficient
information to nount an offline dictionary or brute-force attack

For this reason, SCRAM allows to increase the iteration count over
time. (Note that a server that is only in possession of "StoredKey"
and "ServerKey" can’t automatically increase the iteration count upon
successful authentication. Such an increase would require resetting
the user’s password.)

If the authentication information is stolen fromthe authentication
dat abase, then an offline dictionary or brute-force attack can be
used to recover the user’s password. The use of salt mtigates this
attack sonewhat by requiring a separate attack on each password

Aut henti cation nechani sns that protect against this attack are

avail able (e.g., the EKE class of nechanisnms). RFC 2945 [RFC2945] is
an exanpl e of such technology. The WG el ected not to use EKE I|ike
mechani sms as a basis for SCRAM

If an attacker obtains the authentication information fromthe

aut hentication repository and either eavesdrops on one authentication
exchange or inpersonates a server, the attacker gains the ability to
i mpersonate that user to all servers providi ng SCRAM access using the
same hash function, password, iteration count, and salt. For this
reason, it is inportant to use randonmly generated salt val ues.

SCRAM does not negotiate a hash function to use. Hash function
negotiation is left to the SASL mechani smnegotiation. It is
important that clients be able to sort a locally available Iist of
mechani sms by preference so that the client may pick the appropriate
mechanismto use froma server’s advertised mechanismlist. This
preference order is not specified here as it is a local matter. The
preference order shoul d include objective and subjective notions of
mechani sm crypt ographic strength (e.g., SCRAMw th a successor to
SHA-1 rmay be preferred over SCRAM with SHA-1).

Note that to protect the SASL nmechani sm negoti ati on applications
normal |y nmust list the server nechanisns tw ce: once before and once
after authentication, the latter using security layers. Since SCRAM
does not provide security layers, the only ways to protect the
mechani sm negoti ati on are a) use channel binding to an externa
channel, or b) use an external channel that authenticates a user-
provi ded server nane.

Newman, et al. St andards Track [Page 21]

RFC 5802 SCRAM July 2010

10.

SCRAM does not protect agai nst downgrade attacks of channel binding
types. The conplexities of negotiating a channel binding type, and
handl i ng down-grade attacks in that negotiation, were intentionally
| eft out of scope for this docunent.

A hostile server can performa conputational denial-of-service attack
on clients by sending a big iteration count val ue.

See [RFC4086] for nore information about generating randonmess.
| ANA Consi derati ons

| ANA has added the following famly of SASL nechanisns to the SASL
Mechani smregistry established by [RFC4422]:

To: iana@ ana.org
Subj ect: Registration of a new SASL fanmi |y SCRAM

SASL nmechani sm nanme (or prefix for the famly): SCRAM *
Security considerations: Section 7 of [RFC5802]

Publ i shed specification (optional, recomrended): [RFC5802]
Person & enmmil address to contact for further information:
| ETF SASL WG <sasl @etf.org>

I nt ended usage: COVMON

Onner/ Change controller: |ESG <i esg@etf.org>

Note: Menbers of this famly MJIST be explicitly registered
using the "I ETF Review' [RFC5226] registration procedure.
Revi ews MUST be requested on the SASL mailing |ist

<sasl @etf.org> (or a successor designated by the responsible
Security AD).

Note to future SCRAM nechani sm desi gners: each new SCRAM SASL
mechani sm MUST be explicitly registered with | ANA and MJST conply
wi th SCRAM nechani sm nami ng convention defined in Section 4 of this
docunent .

Newman, et al. St andards Track [Page 22]

RFC 5802 SCRAM July 2010

I ANA has added the following entries to the SASL Mechanismregistry
est abl i shed by [RFC4422]:

To: iana@ ana.org
Subj ect: Registration of a new SASL nechani sm SCRAM SHA- 1

SASL nmechani sm nanme (or prefix for the fanmly): SCRAM SHA-1
Security considerations: Section 7 of [RFC5802]

Publ i shed specification (optional, reconmrended): [RFC5802]
Person & email| address to contact for further information:

| ETF SASL WG <sasl @etf.org>

I nt ended usage: COVMON

Onner/ Change controller: |ESG <i esg@etf.org>

Not e:

To: iana@ ana.org
Subj ect: Registration of a new SASL nechani sm SCRAM SHA- 1- PLUS

SASL nmechani sm nane (or prefix for the famly): SCRAM SHA- 1- PLUS
Security considerations: Section 7 of [RFC5802]

Publ i shed specification (optional, recomrended): [RFC5802]

Person & email| address to contact for further information:

| ETF SASL WG <sasl @etf.org>

I nt ended usage: COVMON

Onner/ Change controller: |ESG <i esg@etf.org>

Not e:

Per this docunent, |ANA has assigned a GSS-API nechanism O D for
SCRAM SHA-1 fromthe iso.org.dod.internet.security.nechanisns prefix
(see "SM Security for Mechani sm Codes" registry).

11. Acknow edgenent s

Thi s docunment benefited from di scussions on the SASL WG nailing |ist.
The authors would like to specially thank Dave Cridland, Sinon

Josef sson, Jeffrey Hutzel man, Kurt Zeil enga, Pasi Eronen, Ben
Canpbel | , Peter Saint-Andre, and Tobias Markmann for their
contributions to this docunment. A special thank you to Sinon
Josefsson for shepherding this docunment and for doing one of the
first inplenentations of this specification.

Newman, et al. St andards Track [Page 23]

RFC 5802

SCRAM July 2010

12. Ref er ences

12. 1. Nor mat i

[RFC2104]

[RFC2119]

[REC3174]

[RFC3454]

[RFC3629]

[RFC4013]

[RFC4422]

[RFC4648]

[RFC5056]

[RFC5234]

[RFC5929]

12. 2. Nornmati

[REC2743]

[RFC3961]

Newran, et al.

ve References

Krawczyk, H., Bellare, M, and R Canetti, "HVMAC. Keyed-
Hashi ng for Message Authentication", RFC 2104,

February 1997.

Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

Eastl| ake, D. and P. Jones, "US Secure Hash Al gorithm1
(SHA1)", RFC 3174, Septenber 2001.

Hof fman, P. and M Bl anchet, "Preparation of
Internationalized Strings ("stringprep")", RFC 3454,
Decenber 2002.

Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

Zeilenga, K., "SASLprep: Stringprep Profile for User Nanes
and Passwords", RFC 4013, February 2005.

Mel ni kov, A. and K Zeilenga, "Sinple Authentication and
Security Layer (SASL)", RFC 4422, June 2006.

Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

WIllianms, N., "On the Use of Channel Bindings to Secure
Channel s", RFC 5056, Novenber 2007.

Crocker, D. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

Altman, J., WIlliams, N, and L. Zhu, "Channel Bi ndings
for TLS", RFC 5929, July 2010.

ve References for GSS-APlI | npl enentors

Linn, J., "Generic Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.

Raeburn, K., "Encryption and Checksum Specifications for
Ker beros 5", RFC 3961, February 2005.

St andards Track [Page 24]

RFC 5802

[RFC3962]

[RFC4121]

[RFC4401]

[RFC4402]

[RFC5801]

SCRAM July 2010

Raeburn, K., "Advanced Encryption Standard (AES)
Encryption for Kerberos 5", RFC 3962, February 2005.

Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
Version 5 CGeneric Security Service Application Program
Interface (GSS-API) Mechanism Version 2", RFC 4121,
July 2005.

WIllianms, N, "A Pseudo-Random Function (PRF) API
Extension for the Generic Security Service Application
Program I nterface (GSS-API)", RFC 4401, February 2006.

WIllianms, N, "A Pseudo-Random Function (PRF) for the
Kerberos V Generic Security Service Application Program
Interface (GSS-APlI) Mechani sm', RFC 4402, February 2006.

Josefsson, S. and N Wllians, "Using Generic Security
Service Application ProgramlInterface (GSS-APlI) Mechani sns
in Sinple Authentication and Security Layer (SASL): The
GS2 Mechani sm Fami ly", RFC 5801, July 2010.

12.3. Informative References

[CRAVHI STORI C]

Zeilenga, K, "CRAMMS to Historic", Wrk in Progress,
Novernber 2008.

[DI GESTHI STORI C]

[RFC2865]

[RFC2898]

[RFC2945]

[RFC4086]

[RFC4510]

Newran, et al.

Mel ni kov, A., "Myving DI GEST-MD5 to Historic", Wrk
in Progress, July 2008.

Rigney, C., Wllens, S., Rubens, A, and W Sinpson,
"Renpte Authentication Dial In User Service (RAD US)",
RFC 2865, June 2000.

Kal i ski, B., "PKCS #5: Password-Based Cryptography
Speci fication Version 2.0", RFC 2898, Septenber 2000.

Wi, T., "The SRP Authentication and Key Exchange Systent,
RFC 2945, Septenber 2000.

Eastl ake, D., Schiller, J., and S. Crocker, "Randomess
Requirements for Security", BCP 106, RFC 4086, June 2005.

Zeilenga, K., "Lightweight Directory Access Protocol

(LDAP): Techni cal Specification Road Map", RFC 4510,
June 2006.

St andards Track [Page 25]

RFC 5802

[RFC4616]

[RFC4949]

[RFC5226]

[RFC5246]

[RFC5803]

SCRAM July 2010

Zeil enga, K., "The PLAIN Sinple Authentication and
Security Layer (SASL) Mechani sni, RFC 4616, August 2006.

Shirey, R, "Internet Security d ossary, Version 2",
RFC 4949, August 2007.

Narten, T. and H Al vestrand, "Cuidelines for Witing an
| ANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.

Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

Mel ni kov, A., "Lightweight Directory Access Protocol
(LDAP) Schema for Storing Salted Chal |l enge Response
Aut henti cati on Mechani sm (SCRAM Secrets", RFC 5803,
July 2010.

[tls-server-end-point]

Newman,

et al.

| ANA, "Registration of TLS server end-point channel
bi ndi ngs”, available fromhttp://ww.iana.org, June 2008.

St andards Track [Page 26]

RFC 5802 SCRAM July 2010

Appendi x A. Ot her Authenticati on Mechanisns

The DI GEST- MD5 [DI GESTHI STORI C] nechani sm has proved to be too
complex to inplenment and test, and thus has poor interoperability.
The security layer is often not inplenented, and al nost never used;
everyone uses TLS instead. For a nore conplete |list of problens with
DI GEST-MD5 that led to the creation of SCRAM see [DI GESTH STORI C] .

The CRAM MD5 SASL nmechanism while w dely depl oyed, al so has sone
problens. |In particular, it is mssing sone nodern SASL features
such as support for internationalized usernanes and passwords,
support for passing of authorization identity, and support for
channel bindings. It also doesn’t support server authentication
For a nmore conplete list of problens with CRAM MD5, see

[CRAVH STORI C] .

The PLAI N [RFC4616] SASL nmechani smallows a nalicious server or
eavesdropper to inpersonate the authenticating user to any other
server for which the user has the same password. It also sends the
password in the clear over the network, unless TLS is used. Server
aut hentication is not supported.

Appendi x B. Design Mtivations

The foll owi ng design goals shaped this docunent. Note that some of
the goal s have changed since the initial version of the docunent.

0 The SASL nechani sm has all nodern SASL features: support for
i nternationalized usernanes and passwords, support for passing of
aut hori zation identity, and support for channel bindings.

o The protocol supports nutual authentication

0 The authentication information stored in the authentication
dat abase is not sufficient by itself to inpersonate the client.

0 The server does not gain the ability to inpersonate the client to
other servers (with an exception for server-authorized proxies),
unl ess such other servers all ow SCRAM aut henticati on and use the
sane salt and iteration count for the user

0 The mechanismis extensible, but (hopefully) not over-engi neered
in this respect.

0 The mechanismis easier to inplenent than DI GEST-MD5 in both
clients and servers.

Newman, et al. St andards Track [Page 27]

RFC 5802 SCRAM July 2010

Aut hors’ Addr esses

Chri s Newman

Oracl e

800 Royal Oaks
Monrovia, CA 91016
USA

EMail : chris. newran@r acl e. com
Abhijit Menon-Sen

Oryx Mail Systens GrbH

EMai |l : ans@oroid.org

Al exey Mel ni kov

| sode, Ltd.

EMai | : Al exey. Mel ni kov@ sode. com
Ni colas WIlians

Oracl e

5300 Riata Trace Ct

Austin, TX 78727

USA

EMail: Nicolas.WIIlianms@racl e.com

Newman, et al. St andards Track [Page 28]

